Как ищут чужие планеты?

Рассуждая о полетах к другим звездам, следует понимать, что собственно к звездам нам не надо — нам надо к другим планетам, желательно землеподобным и пригодным для жизни. А как узнать есть ли у соседних звезд планеты? Казалось бы все просто: возьми телескоп побольше, да посмотри. Если далекие галактики можем рассмотреть, то уж у близких звезд должны увидеть и планеты и спутники. Но есть “небольшая” сложность: в отличие от звезд и галактик, планеты практически не светятся сами, а только отражают свет своих звезд. Звезда засвечивает свои окрестности, поэтому, несмотря на развитие астрономической техники в ХХ веке, первую экзопланету — планету у другой звезды — нашли меньше тридцати лет назад.

Сегодня для поиска экзопланет разработано и освоено несколько методов.

Прямое наблюдение

Достаточно большой телескоп сможет рассмотреть достаточно большую и удаленную от своей звезды планету. Но для этого приходится постараться и воспользоваться специальным оборудованием. Чтобы избавиться от яркого света звезды, для поиска планет используют коронограф — непрозрачный диском в оптической схеме телескопа, который позволяет перекрывать свет яркого источника. В сочетании с адаптивной оптикой, эта система позволяет рассматривать крупные и удаленные планеты у соседних звезд. Лучше всего получается находить “молодые Юпитеры”, в инфракрасном диапазоне т.к. у них сохраняется высокое тепловое излучение со времен формирования.

637259_original

Несколько коронографов установили на 8-метровых телескопах обсерватории Gemini и VLT, которые обеспечивают высокое разрешение. И на сегодня уже смогли рассмотреть всего несколько инопланетных систем. Иногда система оказывается настолько молода, что планет еще не видно, зато хорошо различим протопланетный диск, как например у HR 4796, на расстоянии 230 св. лет от нас.

637729_original

У звезды Бета Живописца смогли даже проследить орбитальное движение планеты за два года

634960_original

Космическому телескопу Hubble тоже удалось рассмотреть планету в результате многолетних наблюдений пылевого диска вокруг звезды Фомальгаут.

635519_original

В ближайшие годы количество экзопланет найденных и рассмотренных прямыми методами будет только расти, но пока так открывают и исследуются единичные тела. NASA ведет проект космической обсерватории Exo-S, которая состоит из отдельно выведенного телескопа и коронографа. Но предполагаемой даты запуска пока не называли.

636952_original

Транзитный метод

Этот косвенный метод позволяет определить число планет, их размеры, орбитальный период и параметры орбиты. В некоторых случаях удается даже получить грубые представления о составе атмосферы. В настоящий момент этот метод рекордсмен по количеству обнаруженных планет, прежде всего потому, что позволяет телескопам работать по площадям, а не концентрировать внимание на одной цели.

Принцип работы транзитного метода — фотометрия. Во время наблюдения регистрируется интенсивность свечения звезды. Если между нами и звездой проходит планета, то яркость звезды падает, и этот момент регистрируется на графике яркости.

638256_original

Если провалы яркости происходят регулярно, и всегда равны, то можно предполагать, что такое воздействие вызывается планетой.

Колебания яркости звезды может вызывать не только планета, это могут быть внутренние циклы или звезда-компаньон. Поэтому транзитный метод требует подтверждения независимым методом. Сейчас известно несколько тысяч транзитных кандидатов, которые постепенно подтверждают или опровергают.

Несмотря на успехи этого метода, очевидны его недостатки:

Во-первых, планете должно повезти с орбитой, лежащей на линии нашего взгляда с Земли. Например Венера каждые 7,5 месяцев облетает вокруг Солнца, пролетая между нами и ним, однако ближайший транзит будет в 2117 году. Меркурий пролетает чаще, ближайший транзит ждем 9 мая.

Во-вторых, как видим, транзитный метод лучше работает для близких к звезде планет, особенно большого размера. Именно транзитный метод породил массу открытий т.н. «горячих Юпитеров» — близких к своим звездам планет-гигантов. Любопытно, что эти открытия опровергли существующую ранее теорию формирования планетных систем, которая объясняла распределение каменных и газовых планет в Солнечной системе.

В-третьих, поиск землеподобных экзопланет требует длительного времени наблюдения, ведь мало засечь единичный транзит, надо получить статистику: хотя бы три транзита. Т.е. для обнаружения, к примеру, Земли транзитным методом инопланетянам надо три года смотреть на Солнце «не моргая».

Длительные непрерывные наблюдения большого количества звезд стали возможны с развитием космонавтики, и запуском космического телескопа Kepler. Для повышения его эффективности, его направили на звездное скопление в созвездии Лебедя. Это позволило совершить множество открытий, но, к сожалению все эти планеты на расстоянии 2-3 тыс. св. лет, поэтому физически добраться до них или хотя бы рассмотреть, мы можем только мечтать.

639039_original

Kepler проработал стабильно 4 года, пока не вышли из строя два из четырех двигателей-маховиков, которые позволяли ему поддерживать ориентацию. А нужно минимум три, для прицеливания по трем осям, поэтому теперь он работает в сильно ограниченном режиме используя два маховика и давление солнечного света в качестве третьего. Работоспособность его упала на 95%, но всей статистики наблюдения накоплено столько, что мы еще долго будем слышать об открытиях сделанных с его помощью.

NASA поддержало проект института MIT следующего телескопа для транзитного поиска планет в пределах 100 св. лет вокруг Солнца. Полет TESS ожидается в 2017 году. Думается, его результаты будут привлекать гораздо больше внимания общественности, т.к. планеты будут обнаружены «совсем близкие».

Метод радиальных скоростей (по допплеровскому сдвигу)

Мой любимый метод из-за феноменальных точностей, которые он обеспечивает и элегантной простоте физического принципа, легшего в его основу.

Но для начала немного о теории спектроскопии. Надеюсь все знают, что такое радуга, и как она образуется. Радуга — это спектр Солнца, полученный естественным путем. В спектре излучения сокрыт химический состав звезды, поскольку каждый химический элемент, будучи нагретым, светится каждый своим цветом.

635954_original

Свечение регистрируется спектрометром и, определяя различные линии спектра, удается определять состав излучающего объекта. Если свет проходит через атмосферу планеты или отражается от поверхности, то часть света поглощается, и в спектре образуются провалы, указывающие на химические элементы, поглотившие свет.

Еще одно физическое явление, необходимое для понимания метода радиальных скоростей — это красное и синее смещение.

635372_original

Когда изучаемая звезда удаляется от нас, длина волны испускаемого света растягивается, из-за чего весь спектр сдвигается в красную сторону. Если элемент удаляется и излучает красный свет, то мы его регистрируем уже в инфракрасном диапазоне, если зеленый, то в желтом, если синий, то в зеленом, и т.д.

Синее смещение — это обратный процесс. Если звезда несется к нам навстречу, то ее спектр «синеет» — сдвигается в синюю и ультра-фиолетовую сторону.

Как это связано с наличием планет у далеких звезд? Терпение. Нужно учесть еще одно свойство — движение двух тел у одного центра масс.

Все мы знаем, что Земля вращается вокруг Солнца. Это как бы верно, но не совсем. На самом деле Солнце и Земля вращаются вокруг одного центра масс, который не соответствует центру Солнца. Такой эффект есть и у Земли с Луной, а у Плутона с Хароном центр масс находится за пределами Плутона, поэтому они оба вращаются вокруг условной точки между ними.

639371_original

Разумеется, ничтожно малая масса Земли приводит к совершенно незначительному колебанию Солнца — в пределах 50 км, а вот Юпитер уже неслабо колбасит Солнце, вынуждая его отклоняться на 750 тыс км. Т.е. Юпитер и Солнце так же как и Плутон с Хароном вращаются вокруг точки в пространстве.

А теперь сводим все к одному методу поиска: экзопланета, вращаясь, вокруг своей звезды, вынуждает ее вращаться с отклонением от своего центра масс. Соответственно, относительно внешнего наблюдателя, звезда будет то отдаляться, то приближаться, что будет приводить то к красному, то к синему смещению спектра. Мы можем взять достаточно чувствительный спектрометр, и сможем увидеть как периодически краснеет и синеет спектр звезды, в полном соответствии с орбитальной динамикой планеты.

636572_original

И, наконец, о точности метода: спектрограф HARPS на 3,6 метровом телескопе Ла Силла Европейской Южной обсерватории позволяет отслеживать движение звезды со скоростью до 1 метра (!) в секунду. Подобный метод позволяет находить землеподобные планеты на расстоянии до 150 св лет от нас, а “юпитеры” до нескольких тыс. световых лет. Как правило, именно метод допплеровского сдвига используют для перепроверки кандидатов планет, полученных транзитным методом.

К сожалению, метод работает точечно, и требует многократных наблюдений каждого объекта, поэтому не успевает угнаться за Keplerом, и не успевает осмотреть окрестные звезды. Однако, недавно HARPS поработал в поиске землеподобной планеты у ближайшей к нам звезды Проксима Центавра, в рамках проекта Pale Red Dot. Результаты еще не опубликованы, но ожидания весьма обнадеживающие.

В целом, эти два метода: транзитный и по допплеровскому сдвигу, составляют практически основу всех поисков:

636866_original

Пробежимся еще по нескольким оригинальным методам, которые, с некоторыми оговорками, но работают.

Изменение орбитальной фазы отраженного света

Метод похож на транзитный, только регистрирует не падение яркости, а увеличение. Эффект возникает, когда планета у звезды находится в фазе четверти, и часть падающего света отражает в нашу сторону. Это как блеск вечерней/утренней Венеры плюсуется к яркости Солнца. Эффект зависит от размеров экзопланеты, близости ее к звезде, и яркости отраженного света. Метод грубый, зато не требует нахождения орбиты планеты на линии нашего взгляда.

Астрометрический метод

Похож на метод по допплеровскому сдвигу, требует длительных наблюдений, но не требует спектрометров. В ходе наблюдения положение звезды тщательно регистрируется относительно соседних объектов, и если наблюдаются волнообразные отклонения, то это указывает на достаточно массивного компаньона, вынуждающего звезду вращаться вокруг общего центра масс. Понятно, что звезда должна быть небольшой, а ее планета массивной, поэтому так чаще можно находить двойные звезды и коричневые карлики-компаньоны.

Уникальные астрометрические данные за десятилетия наблюдений накоплены в Пулковской обсерватории под Санкт-Петербургом. Сейчас обсерватория переживает нелегкие времена из-за растущего мегаполиса и засвеченного неба.

Метод гравитационного микролинзирования

Оригинальный метод, основанный на эффектах отклонения луча света гравитационным полем массивных объектов. Эффект гравитационной линзы возникает если точно на линии нашего взгляда оказывается два ярких и достаточно массивных тела. Например звезда нашей Галактики проходит между нами и другой далекой звездой или галактикой. Гравитация близкой звезды влияет на свет далекого объекта, отклоняя его, и формируя эффект «линзы». Если гравитационное поле звезды деформируется гравитацией экзопланет в ее системе, то и «линза» получится «бракованная» — с нарушениями.

638890_original

Развитие этого метода — поиск эффектов линзирования, которые вызываются невидимыми планетами, вплоть до бродячих по Галактике без своих собственных звезд.

637517_original

Подобные поиски начал недавно Kepler перенацелившись на центр галактики Млечный путь. При проведении этого маневра связь с телескопом была потеряна, но сейчас уже восстановили, и теперь ждем новых данных от телескопа о перспективности метода.

638109_original

В ближайшем будущем земляне узнают гораздо больше о своем окружении. Запуск космической обсерватории James Webb и строительство европейского Экстремального телескопа, появление более чутких спектрографов на замену HARPS, и результаты астрометрической “переписи населения Галактики” обсерваторией Gaia, позволят гораздо лучше понять строение и происхождение ближайших и отдаленных звездных систем, и узнать есть ли шанс у нас найти “запасную Землю”, инопланетную жизнь или даже разумных обитателей экзопланет.

Опубликовано в блоге ASUS на Geektimes.